UNIVERSITA' DEGLI STUDI DI PAVIA SCUOLA DI SPECIALIZZAZIONE IN NEUROPSICHIATRIA INFANTILE

Direttore: Chiar.mo Prof. U. Balottin

NEXT GENERATION SEQUENCING E LA DIAGNOSTICA DELLE EPILESSIE

F. Brustia

GENETICA DELLE EPILESSIE

- L'epilessia è un condizione che si manifesta con crisi epilettiche ricorrenti e non provocate, prevalenza 5-10/1000 persone, incidenza di 50-120/100.000 persone per anno
- Etiologia molto eterogenea, forte contributo genetico, dalla metà del XX secolo sono stati identificati geni specifici con eredità mendeliana legati all'epilessia (Lennox, 1951)
- Dal 1995 identificate almeno una dozzina di epilessie geneticamente determinate, grazie al progresso nella ricerca genetica
- Sia fattori genetici che ambientali contribuiscono in varia misura all'etiologia delle diverse sindromi epilettiche (Berkovic et al., 1987-2006; Vadlamudi et al., 2004)

GENETICA DELLE EPILESSIE

Conoscere la base genetica dell'epilessia è utile:

- per la diagnosi,
- per indirizzare il trattamento farmacologico e
- per stimare il rischio di ricorrenza in successive gravidanze

La principale difficoltà degli studi genetici sull'epilessia sta nella marcata eterogeneicità clinica e genetica e dall'interazione con i fattori ambientali (Metrakos, 1960; Berkovic 2006), che ostacolano una chiara diagnosi clinica e l'esecuzione di test genetici specifici

Sviluppate tecniche per identificare i geni di suscettibilità, microarray e studio dell'intero genoma, con conseguente miglioramento della fenotipizzazione e della classificazione delle sindromi epilettiche

CLASSIFICAZIONE

- Classificazione etiologica:
 - idiopatico, criptogenetico, essenziale o genetico
 - sintomatico o acquisito
- Classificazione anatomica:
 - sottocorticali
 - corticali
- Classificazione Internazionale delle crisi epilettiche (Gastaut, 1970), basata su clinica e criteri EEG e poi su anatomia ed etiologia
- Classificazione crisi epilettiche ILAE 1981
- Classificazione delle epilessie e delle sindromi epilettiche ILAE 1989, epilessie primarie e secondarie costituivano un continuum biologico
- Classificazione ILAE 2001 (revisione 2010), basata sull'età di esordio

ILAE Proposta di revisione della terminologia per l'organizzazione delle crisi ed Epilessie 2010

Sindromi elettrocliniche e altre epilessie

Sindromi elettrocliniche

Esempio di come le sindromi possono essere organizzate: Suddivise per età tipica di esordio*

Periodo Neonatale

Crisi benigne
neonatai*
Epilessia benigna
neonatale familiare
Sindrome di Ohtahara
Encefalopatia
miocionica precoce (EME)

Infanzia

- Crisi febbrili*, Crisi febbrili plus (FS+)
- Epilessia infantile benigna
- Epilessia benigna infantile familiare
- Sindrome di West
- Sindrome di Dravet
- Epilessia mioclonica dell'infanzia MEI)
- Encefalopatia mioclonica in disordini non progressivi
- Epilessia dell'infanzia con crisi focali migranti

Bambino

- Crisi febbrili*, Crisi febbrili puls (FS+)
- Epilessia occipitale precoce del bambino
- (Sindrome di Panayiotopoulos)
- Epilessia con crisi mioclono atoniche (precedentemente astatiche)
- Epilessia con assenze dell'infanzia
- Epilessia benigna con punte centrotemporali (BECTS)
- Epilessia del lobo frontale notturna autosomica dominante (ADNFLE)
- Epilessia occipitale del bambino ad esordio tardivo (tipo Gastaut)
- Epilessa con assenze miodoniche
- Sindrome di Lennox-Gastaut (LGS)
- Encefalopatia epilettica con punte-onda continue durante il sonno (CSWS)*
- Sindrome di Landau-Kleffer

Adolescenti - Adulti

- Epilessia giovanile con assenze (JAE)
- Epilessia mioclonica giovanile (JME)
- Epilessia con sole crisi tonico-cloniche generalizzate
- Epilessia autosomica dominante con sintomi uditivi
- Altre epilessie del lobo temporale familiari

Età variabile

- Epilessia familiare focale con foci variabili
- (bambini e adulti)
- Epilessie miodoniche progressive (PME)
- Epilessie riflesse

Costellazioni peculiari/sindromi chirurgiche

Costellazioni peculiari/sindromi chirurgiche

- Epilessia del lobo temporale mesiale con sclerosi dell'ippocampo (MTLE con HS)
- Sindrome di Rasmussen
- Crisi gelastiche con amartoma ipotalamico
- Emiconvulsioni/emiplegie/epilessie

Epilessie non sindromiche"

Epilessie attribuite a cause strutturali metaboliche

- Malformazioni da sviluppo corticale
- (emimegalencefalie, eterotopie, ecc.)
- Sindromi neurocutanee (sclerosi tuberosa complex,
- Sturge-Weber, ecc.)
- Tumore, infezione, trauma, angioma, danni precoci perinatali ictus, ecc.

Epilessie da causa sconosciuta

La suddivisione delle sindromi cliniche non riflesse l'eziologia

- Tradizionalmente con classificate come epilessie
- Talore chiamato anche ESES (Electrical Status Epilepticus During Slow Sleep)

 Forme di epilessie che non rientrano nei criteri per specifiche sindromi o costellazioni

Questa proposta è un "work in progress" http://community.ilae-epilepsy.org/home/

Basi per una nuova classificazione che comprenda i progressi della genetica molecolare?

CLASSIFICAZIONE GENETICA DELLE EPILESSIE (Andermann & Dubeau, 1997)

Sindromi epilettiche Mendeliane o dipendenti da un singolo gene

Sindromi epilettiche con eredità complessa o multifattoriale

Malattie con epilessia causate da un singolo gene

Malattie mitocondriali associate ad epilessia: eredità materna o citoplasmaticamutazioni nucleari

Anomalie cromosomiche associate all'epilessia: anomalie strutturali rilevate da tecniche citogenetiche, variazione del numero di copie (microdelezioni o duplicazioni)

Fenocopie

ULTIMO UPDATE DEI GENI IMPLICATI NELLE EPILESSIE – LICE 2012

EPILESSIE IDIOPATICHE				
	Trasmissione	Locus	Gene	Referenza
Crisi Neonatali Benigne Familiari	AD	20q13	KCNQ2	1
		8q24	KCNQ3	2
Crisi Neonatali-Infantili Benigne Familiari	AD	2q24	SCN2A	3
Crisi Infantili Benigne Familiari	AD	16p11	PRRT2	4,5
con o senza coreo atetosi/discinesia)	AU	2q24	SCN2A	6
Crisi Infantili Benigne Familiari e				
Emicrania Emiplegica Familiare	AD	1q23	ATP1A2	7
E Autosomica Dominante Notturna	AD	20q13	CHRNA4	8
del Lobo Frontale		1p21	CHRNB2	9
		8p12	CHRNA2	10
E Familiare del Lobo Temporale Laterale	AD	10q24	LGI1	11,12
E Genetica con Convulsioni	AD	2q24	SCN1A	13,14
Febbrili Plus (GEFS+)		19q13	SCN1B	15,16
,		2q24	SCN2A	17
		5q	GABRG2	18.19
Epilessia mioclonica familiare infantile (FIME)	AR	16q13	TBC1D24	20
F. Misslanias Cissanila (Cindona di Isra)	. AD	5-04	GABRA1	
E Mioclonica Giovanile (Sindrome di Janz)	AD	5q34	GABRAT EFHC1	21 22
Consulization disposition con forestini	AD	6p12	SLC2A1	
E Generalizzata Idiopatica con fenotipi variabili (incl. assenze precosi)	AD	1q35	SLCZAT	23
E Generalizzata Idiopatica e	AD	2g22	CACNB4	
E Generalizzata idiopatica e Atassia Episodica	AD	2922 19a	CACNA1A	24 25
		194	CACIVAIA	25
Encefalopatie Epilettiche				
	AR	11p15	SLC25A22	26
Encefalopatia epilettica ad esordio precoce	de novo	9q34	STXBP1	27
(neonatale/primo anno)	AR de novo	16p13	TBC1D24 KCNQ2	28 29
		20q13		
Spasmi infantili e fenotipo Rett-like	X-linked	Xp22	CDKL5	30
E Mioclonica Severa dell'Infanzia /	de novo	2q24	SCN1A	31
Sindrome di Dravet	X-linked	Xq22	PCDH19	32
Epilessia e ritardo mentale nelle femmine	X-linked	Xq22	PCDH19	33
EPILESSIE MIOCLONICHE PR	ROGRESSIV	E		
	Trasmissione	Locus	Gene	Referenza
Malattia di Unverricht-Lundborg (EPM1)	AR	21q22.3	EPM1 (Cistatina B)	34,35
Malattia di Lafora (EPM2)	AR	6q24	EPM2A (Laforina)	36
	AR	6q22	EMP2B (Malina)	37
MERRF/MELAS	Mat	mt-DNA	t-RNA (8344,8356,8363)	38
	AR		POLG1	

6p21.3

20q13.1

Neuraminidasi (NEU)

40

Sialidosi
Tipo 1, 2

Galattosialidosi

Ceroidolipofuscinosi				
 Infantile tardiva di Jansky-Bielschowsky 	AR	11p15	CLN2	42
"Finlandese"	AR	13q21	CLN5	43
"Variante"	AR	15q21	CLN6	44
 Giovanile di Spielmeyer-Vogt-Sjogren 	AR	16p	CLN3	45
Adulta di Kufs	AR	15q21	CLN6	46
	AD	20q13.33	DNAJC5	47
AMRF (action myoclonus-renal failure syndrome)	AR	4q21	SCARB2	48
variante simil-ULD senza interessamento renale	AR	4q21	SCARB2	49
PME con atassia precoce	AR	12q12	PRICKLE1	50
Atrofia Dentato-Rubro-Pallido-Luisiana	AD	12p13	B37 (Atrofina)	51
Malattia di Gaucher tipo III	AR	1p21	Glucocerebrosidasi	52
Malattia di Huntington Giovanile	AD	4p16	Huntingtina	53
Gangliosidosi GM2	AR	15q23-q24	Hexa	54
EMP con inclusion di neuroserpina	AD	3q26	Pl12	55
EMP ad esordio precoce	AR	7q11	KCTD7	56

MALFORMAZIONI CEREBRALI SU BASE GENETICA

Tras	missione	Locus	Gene	Referenza					
Malformazioni dovute a proliferazione neuronale anomala									
Sclerosi Tuberosa	AD	9q32	TSC1	57					
Sclerosi Tuberosa	AD	16p13	TSC2	57					
Malformazioni dovute a migrazione neuronale anomala									
Lissencefalia Isolata (ILS)/eterotopia sottocorticale (SBH	l) AD	17p13.3	LIS1	58					
Lissencefalia Isolata (ILS)/eterotopia sottocorticale (SBH)	AD	Xq22.3-q23	DCX	59					
Lissencefalia Isolata (ILS)/eterotopia sottocorticale (SBH)	AD	12q13.12	TUBA1A	60					
Sindrome di Miller-Dieker	AD	17p13.3	LIS1+YWHAE	61					
Lissencefalia X-linked con genitali ambigui (XLAG)	X-linked	Xp22.1	ARX	62					
Lissencefalia con ipoplasia cerebellare (LCH)	AR	7q22.1	RELN	63					
Lissencefalia con ipoplasia cerebellare (LCH)	AR	9p24.2	VLDLR	64					
Eterotopia periventricolare bilateral classica	X-linked	Xq28	FLNA	65					
Eterotopia periventricolare	AD	5p15.1	-	66					
Eterotopia periventricolare	AD	5p15.33	-	67					
Eterotopia periventricolare e syndrome di Williams	AD	7p11.23	-	68					
Eterotopia periventricolare	AD	4p15	<u>-</u>	69					
Eterotopia periventricolare	AD	5p14.3-15	-	70					
Eterotopia periventricolare e agenesia del corpo calloso	AD	1p36.22-pter	-	71					
Eterotopia nodulare periventricolare (PNH) e microcefalia	AR	20p13	ARFGEF2	72					
Distrofia muscolare congenita di Fukuyama o				•					
sindrome di Walker-Warburg (WWS)	AR	9q31.2	FKTN	. 73					
"Muscle-eye-brain disease (MEB)" o WWS	AR	19q13.32	FKRP	74					
"Muscle-eye-brain disease (MEB)"	AR	22q12.3	LARGE	. 75					
"Muscle-eye-brain disease (MEB)"	AR	1p34.1	POMGnT1	76					
"Muscle-eye-brain disease (MEB)" o WWS	AR	9q34.13	POMT1	77					
"Muscle-eye-brain disease (MEB)" o WWS	AR	14q24.3	POMT2	. 78					
Sindrome CEDNIK	AR	22q11.2	SNAP29	. 79					

Eterotopia periventricolare e syndrome di Elhors-Danlos	X-linked	X28	FLNA	65					
Eterotopia periventricolare, dimorfismi facciali e costipazione severa	X-linked	X28	FLNA	65					
Malformazioni dovute a organizzazione corticale anomala									
Polimicrogiria bilaterale perisilviana (BPP)	X-linked	Xq22	SRPX2	. 80					
limicrogiria bilaterale fronto-parietale (BFPP) AR 16q13 GPR56									
Polimicrogiria asimmetrica	limicrogiria asimmetrica AD 6p25.2 TUBB2B								
Polimicrogiria con agenesia del corpo calloso e microcefalia	AD	3p21.3-p21.2	TBR2	83					
Polimicrogiria (con anidria)	AD	11p13	PAX6	84					
Polimicrogiria	AD	1p36.3-pter	-	85					
Polimicrogiria e microcefalia	AD	1q44-qter	-	86					
Polimicrogiria, PNH e agenesia del corpo calloso Polimicrogiria e dimorfismi facciali	AD AD	6q26-qter 2p16.1-p23	-	87 88					
Polimicrogiria, microcefalia e idrocefalo	AD	4q21-q22	-	89					
Polimicrogiria	AD	21q2	-	90					
Polimicrogiria e sindrome di Di George AD 22q11.2 -									
Polimicrogiria e sindrome di Goldberg-Shprintzen AR 10q21.3 KIAA1279									
Polimicrogiria e sindrome di Warburg Micro AR 2q21.3 RAB3GAP1									
ANOMALIE CROMOSOMICHE ED	EPILES	SSIA							
Cromosoma 1	Delezione 1	p36		94					
Cromosoma 4 Delezione 4p16	3.3 (Sindrom	e di Wolf-Hirshho	orn)	95					
Cromosoma 6 Del	lezione 6q te	erminale		96					
Cromosoma 12	Trisomia 1	2p		97					
Cromosoma 14 Cror	mosoma 14 a	ad Anello	•	98					
Cromosoma 15 Delezione 15q11-13 Disomia Uniparentale Mutazioni "Imprinting Center" Mutazioni Gene UBE3A (Sindrome di Angelman)									
Inv dup 15 Cromosoma 17 Delezione 17p13.3 (Sindrome di Miller-Dieker)									
<u> </u>	mosoma 20 a		/	101					
į.		soma X fragile		103					
	me di Klinef	•		104					
Duplicaz	zione (X) (p1	1.22-p11.23)		105					
Cromosoma Y 47, XYY									

TECNICHE DI SEQUENZIAMENTO

- Negli ultimi 20 anni il gold standard è stato il metodo Sanger basato sull'uso di di-deossi nucleotidi applicati al metodo a terminazione di catena
- Utilizzato per il Progetto Genoma Umano (1990-2003), con l'obiettivo di determinare i 3 miliardi di paia di basi del genoma umano e fornire una completa risorsa sulla variabilità genetica umana, con creazione di data base

Necessità di sequenziamento rapido, completo, affidabile ed economico di interi genomi

Sviluppo di nuove tecnologie di sequenziamento di nuova generazione

NEXT GENERATION SEQUENCING (NGS)

TECNICHE DI SEQUENZIAMENTO

Esistono metodi di NGS di prima, seconda e terza generazione utilizzati per sequenziare il genoma e fornire i dati variabilità genetica umana

L'obiettivo è quello di distinguere se le variazioni di singolo nucleotide (SNVs) identificate possano essere o meno patogenetiche

I costi per il Whole Genome Sequencing (WGS) rimangono comunque proibitivi, una strategia alternativa è il sequenziamento delle regioni codificanti le proteine del genoma, Whole Exome Sequencing (WES)

PIATTAFORMA NGS PER LA DIGNOSI DELL'EPILESSIA

Nel nostro studio è stata utilizzata una piattaforma di seconda generazione "ILLUMINA GENOME ANALYZER", in uso c/o questa Struttura in collaborazione con il Laboratorio di Biologia Generale e Genetica Medica - Dipartimento di Medicina Molecolare (Prof.ssa O. Zuffardi)

E' stata composta una piattaforma Next Generation contenente 106 geni responsabili dell'epilessia, per ogni paziente sono stati analizzati, in un unico esperimento, le porzioni codificanti di questi geni.

I geni sono stati selezionati sulla base dei seguenti criteri:

- 1) i geni associati con epilessia idiopatica,
- 2) geni associati con l'epilessia sindromica;
- 3) geni associati a epilessia e malformazioni cerebrali,
- 4) geni che codificano per le proteine dei canali ionici non ancora associate con l'epilessia.

Elenco dei 106 geni delle epilessie utilizzati nella piattaforma NGS

A2BP1, ALDH7A1, AP4E1, ARHGEF9, ARX, ASPM, ATP1A2, ATP6AP2, BRD2, CACNA1A, CACNA1G, CACNA1H, CACNB4, CASR, CCM2, CDKL5, CHRNA2, CHRNA4, CHRNB2, CLCN2, CLN8, CNTNAP2, CSTB, DCX, DMD, DYRK1A, EFHC1, EPM2A, FLNA, FOXG1, GABBR1, GABRA1, GABRA6, GABRB3, GABRD, GABRG2, GJD2, GLUT1, GPR56, GRIK1, GRIN2A, GRIN2B, GPR98, HCN1, JRK, HTT, KCNA1, KCNAB2, KCND2, KCNJ10, KCNMA1, KCNN3, KCNQ2, KCNQ3, KCTD7, KRIT1, LGI1, LIS1, MAGI2, MECP2, MEF2C, MLLT3, NDP, NEDD4L, NHLRC1, NOTCH3, OPA1, OPHN1, OPRM1, PAX6, PCDH19, PDCD10, PDYN, PLCB1, POLG, PORCN, PPP2R2C, PQBP1, PRICKLE1, SCARB2, SCN1A, SCN1B, SCN2A, SCN3A, SCN9A, SHANK3, SLC1A3, SLC25A2, SLC2A1 (GLU1), SLC2A2 (GLUT2), SLC4A10, SLC4A3, SLC6A3, SLC9A6, SRPX2, ST3GAL5, STRADA (lyk5), STXBP1, SYN1, SYP, TAP-1, TBC1D24, TCF4, TUBA1A, TUBB2B, UBE3A.

La nostra piattaforma diagnostica dovrebbe consentire l'identificazione di SNVs, inserzioni e delezioni nei 106 geni selezionati che sono stati già stati collegati con diversi tipi di disturbi epilettici.

PAZIENTI CASI

- 20 pazienti affetti da diversi tipi di epilessia sia isolata, sia associata a disabilità intellettiva o ritardo psicomotorio seguiti c/o la Struttura Semplice Funzioni Speciali di Epilettologia dell'Infanzia e dell'Adolescenza (Responsabile Prof. Veggiotti), all'interno della Struttura Complessa di Neuropsichiatria Infantile (Direttore Prof. Balottin) c/o l'IRCCS Fondazione Istituto Neurologico Nazionale Casimiro Mondino di Pavia
- 4/20 pazienti: fenotipo ben noto
- 10/20 pazienti: fenotipo per cui il background genetico è largamente sconosciuto
- 6/20 pazienti: aspecifica manifestazione di crisi epilettiche con o senza ritardo mentale
- 8/20 pazienti presentano familiarità positiva per epilessia, i rimanenti invece sono casi sporadici.

PAZIENTI CONTROLLI

I soggetti di controllo sono stati reclutati tra i donatori di sangue. La valutazione clinica dei controlli è stata limitata alle risposte ad un questionario strutturato di medicina generale con particolare attenzione a tutti i sintomi neurologici o cardiaci. Solo gli individui con un'anamnesi remota e prossima negative sono stati inclusi

Dal campione ai risultati

In collaborazione con il Laboratorio di Biologia Generale e Genetica Medica - Dipartimento di Medicina Molecolare (Prof.ssa O. Zuffardi), Policlinico San Matteo, sono state eseguite queste procedure con i campioni di sangue prelevati:

- Estrazione del DNA genomico
- Preparazione dei campioni
- Cluster Generation
- Corsa su Illumina Genome Analyzer IIx, sequenziamento multiplo
- Sequenziamento Sanger delle SNVs identificate

RISULTATI

Mutazioni in 8 dei 20 pazienti (40%), causative di malattia, confermate dal sequenziamento convenzionale Sanger e, ove possibile, convalidato dai test dei genitori e dall'analisi della segregazione

Nel primo gruppo dei pazienti con fenotipo ben noto, che suggeriva uno o più geni candidati, la percentuale delle mutazioni è stata del 75% (3/4)									
PZ	s	ETA'	DX	CLINICA	EEG	AED	RMN	FAM.	MUTAZIONI
1- E.M. (83-11)	F	17 aa	Encefalopatia epilettica in soggetto con anomalia malformativa cerebrale (doppia corteccia).	Parto alla 36esima settimana per PROM. Tappe sviluppo in ritardo. Dai 10 aa crisi generalizzate e parziale. ENgrimaces facciali, impaccio motorio. RM grave.	Numerosissime scariche di polipunta onda diffuse che nel sonno diventano per lunghi tratti sub continue.	VPA + CBZ + ETS	Anomalia malformativa caratterizzata dalla presenza di una spessa banda di sostanza grigia eterotopica completa "doppia corteccia"	Dubbia consanguineità tra i genitori.	DCX c.298S3C>T (p.rg100X) , chr X SHANK3 c.898C> T (p.Arg300Cys), chr 22
2- G.P. (84-11)	F	14 aa	Encefalopatia piridossino- dipendente.	A 2 gg crisi TCG. Dal mese crisi parziali e generalizzate FCresistenti e stato di male, miglioramento con	Modeste anomalie lente posteriori bilaterali prevalenti a sx	LMT + Piridossina	Nella norma.	Non riferita.	ALDH7A1 c.1405+5G>A e p.Asn167Ser, chr 5

In passato anomalie a

tipo O lenta diffusa di

grande ampiezza a cui

incostantemente

mioclonie diffuse.

Organizzazione

povera, modeste

anomalie puntute

centrali e sul

Vertice.

Attualmente modeste

corrispondono

anomalie.

Piridossina.

VPA + TPM +

CBM +

Stiripentolo

Nella norma.

Nella norma

Zio della md con

quadro di disabilità

motoria, disturbo

dell'eloquio,

lentamente

progressiva ad

esordio in età tardo

SCN1A

c.1029-2A<G, chr 2

infantile (7-8 aa).

Non riferita

introduzione di Piridossina. A 6 aa QI 8 aa QI 10 aa QI 92. Disturbo funzionale con dispercezioni visive.

A 1 mese primi episodi

critici, presenti fino al 2000

quando è stata introdotta

terapia con Vit B6 con

Da 10 aa non più crisi.

EN e livello cognitivo

Prime tappe sviluppo

linguaggio adeguati a, GQ di

92. Dai crisi in iperpiressia a

partenza focale. Persistenza

GQ 48.6. EN: stereotipie,

di crisi. Deterioramento cognitivo GQ 69.6/100 poi

psicomotorio e del

impaccio, RM..

adeguati.

controllo delle crisi.

3- S.F. (85-11)

4- S.T.

Μ

Μ

14 aa

5mm

4aa 5mm

Epilessia

Piridossino-

dipendente

Sindrome di

mutazione del sito

di spicing c.1029-2A<G allo stato

di eterozigosi nel

gene SCN1A.

Dravet,

				pazienti con , la percentu					
1- E.B. (14-11)	M	9aa 3mm	Epilessia mioclonica	Grave RM (deterioramento cognitivo), crisi miocloniche o TCG. EN. Segni cerebellari.	Tracciati lento, P-O e PP sia multifocali che scariche con mioclonie generalizzate.	VPA + ETS + NTZ + HC + PB	Nella norma.	Non riferita	
2- M.D.M. (8-11)	M	6aa 11mm	Epilessia mioclonica	Dai 4aa crisi con caduta del capo, mioclono negativo AASS e tronco. QIT 124, QIV 119, QIP 124. EN nella norma.	Scariche di PP-O che corrispondono a mioclonie parcellari.	VPA, LMT	Non eseguita	Fratello di S.D.M. (7-11)	
3- S.D.M. (7-11)	M	14aa 10mm	Epilessia generalizzata	Un episodio critico con mioclonie AASS. QIT 121, QIV 118, QIP 120. EN nella norma.	Scariche P-O lenta, PP-O lenta a 3.5 Hz, a dubbia partenza focale (frontale)	LMT	Nella norma	Fratello di M.D.M. (8-11)	
4- D.G.	F	26 mm	Convulsioni febbrili Plus	Dagli numerosi episodi di CF anche con lieve iperpiressia. Sviluppo psicomotorio e linguaggio adeguati (GQ = 116). EN nella norma.	Nella norma	VPA	Non eseguita	Importante famigliarità per CF + da parte della famiglia del pd (vedi risultati)	GABRG2 c.351dup, chr 5
5- M.M. (12-11)	M	6aa 9 mm	EPR	Non sicuri episodi critici. EN e cognitivo nella norma.	P lenta seguita da O in sede T-C bilateralmente, in sonno sub-continue.	Nessuna	Non eseguita	Famigliarità per EPR (vedi risultati)	GRIN2A p.Asp776Tyr, chr 16
6- J.M. (9-11)	M	8 aa	Ritardo mentale lieve-moderato in paziente con epilessia mioclonica	Prime tappe sviluppo psicomotorio e del linguaggio in epoca. A 4 aa prime crisi miocloniche, Q.S. 90,4. Attualmente EN nella norma. RM (QIT 53). Da qualche anno non più crisi.	Buona organizzazione sia in veglia che in sonno senza che siano riconoscibile anomalie epilettiformi	VPA + LMT	Non eseguita.	Md affetta da epilessia generalizzata in terapia. Il fratello della md soffriva di epilessia a tipo assenza. Il pd della Sig.ra ha presentato un episodio critico nei primi mesi	

Anomalie puntute.

Molte anomalie diffuse di

grande ampiezza a tipo

P e PPO generalizzate, poi

solo modeste anomalie.

PPO.

Nella norma

Convulsioni Febbrili

GEFS+ (Neg analisi

geentica per SCN1A)

GEFS+ (Neg analisi

geentica per

SCN1A).

Plus

CF

Μ

Μ

7- A.M.

8- G.P.

9- M.R.

(91-11)

10- T.Z.

16 aa

7 aa

5aa

7mm

12 aa

A 2 aa esordio, convulsione in

A crisi TCG in iperpiressia, in

seguito ulteriori epiusodi anche

in apiressia. Tappe sviluppo in

epoca. E, livello cognitivo nella norma. Da 2 anni non più crisi.

Due convulsioni febbrili. EN e

CF a 3 aa, a 6 aa sospesa th. A 15

aa crisi TCG in apiressia e uno in

iperpiressia. Altri episodi a 16 aa.

FN e livello cognitivo nella

cognitivo adeguato.

sospensione VPA a 11 aa.

EÑ, QI nella norma.

iperpiressia, ultima a 6 aa e dopo

di vita.

CF+.

materna.

Assenze

con CF e

fotosensibilità.

Importante

famigliarità per CF+

paterno. Anche il fratello ha presentato

Emicrania in linea

Pd una convulsione

febbrile, Md CF +

Pd con CF. Sorella

SCN2A

c.1490G>A, chr 2

nella famiglia del ramo

VPA sospeso nel

2006.

LEV

Nessuna

VPA dai 3 ai 6 aa

ancora VPA.

con beneficio. Poi

Non eseguita.

Nella norma.

Non eseguita

Asimmetria

etentinea

ippocampale,

incompleta rotazione

Nel terzo gruppo dei pazienti con manifestazione aspecifica di crisi epilettiche con o senza ritardo mentale, la percentuale di mutazione è stata del 33% (2/6)									
1- A.D.	M	5aa 11mm		Grave ritardo psicomotorio, dai spasmi in flessione poi crisi parziali, reflusso GE, ipotiroidismo	Ipsarirmici in passato. Scarsa organizzazione, non figure fisiologiche. O lente e anomalie multifocali.	VPA + TPM + LMT	RMN pseudoatrofia iatrogena o atrofia cerebrale?	Non riferita	
2- A.E.M.	M	3aa	Encefalopatia epilettica	A 23mm crisi TCG, poi crisi parziali e generalizzate pluriquotidiane. Grave ritardo psicomotorio. Ipercinesie diffuse.	P e PP-O di grande ampiezza diffusa, non attività fisiologica.	LMT + VPA + HC	Nella norma	Non riferita, genitori consanguinei (cugini primi)	
3- A.G. (98-11)	F	15 aa	paziente con quadro malformativo complesso.	Ad riscontro di pregressa emorragia cerebrale e blocco flusso liquorale, derivazione ventricolo peritoneale. Crisi focali e spasmi. A 1 aa QS 58.6. Grave RM, linguaggio assente, deambulazione con l'utilizzo di tutori AFO gamba-piede.	Anomalie a tipo P-O atipica sulle regioni anteriori di entrambi gli emisferi che si attivano nel sonno anche in lunghe sequenze.	VPA + ETS + CBZ + FLB +	Quadro malformativo complesso, con anomalia di Chiari associata a schizencefalia temporale bilaterale a labbra aperte e possibile displasia setto-ottica. Presenti gli esiti degli ematomi frontali. Marcata	Non riferita.	GRIN2B c.2096A>G, chr 12

Modesta asimmetria

interemisferica per

destra più lenta di

Poco organizzato, lento,

intreremisferica per dx

anomalie epilettiformi.

Anomalie P e P-Osulle

più lenta di sx,. Non

non anomalie

epilettiformi.

asimmetria

regioni

CeFdisx.

sinistra

VPA + TPM

VPA + LEV +

NTZ

VPA

4- G.N. (3-11)

5- M.P. (13-11)

6- M.S. (963-09)

M

M

4 aa

4 aa

7aa 9mm

Epilessia parziale

in paziente con

temporomesiale

displasiche del

polo temporale

Encefalopatia

Encefalopatia

epilettica e DPS

congenita di ndd.

sclerosi

sinistra e

sinistro

alterazioni

A convulsione in iperpiressia.

adeguato. Ulteriori episodi

con mioclonie, stato di male.

A insorgenza episodi critici.

Spasmi ed ipsaritmia. Grave

controllo completo del tronco,

Dai 3gg crisi TCG poi crisi a

acquisizioni psico-motorie. Quadro DPS. Impaccio motorio. Linguaggio assente.

partenza focale. Ritardo

ritardo psicomotorio, non

ipotonia, strabismo,

stereotipie motorie.

Grave RM.

A 2 aa QS 90. Non più crisi da

Sviluppo psicomotorio

un anno e 1/2. EN nella

norma.

dilatazione exvacuo del sistema ventricolare sovratentoriale.

Anomalie

sclerosi

compatibili con

temporomesiale

sx, associata ad

temporale sx.

Atrofia cerebrale

diffusa di discreta-

marcata entità con

aree terminali e

mielinizzazione.

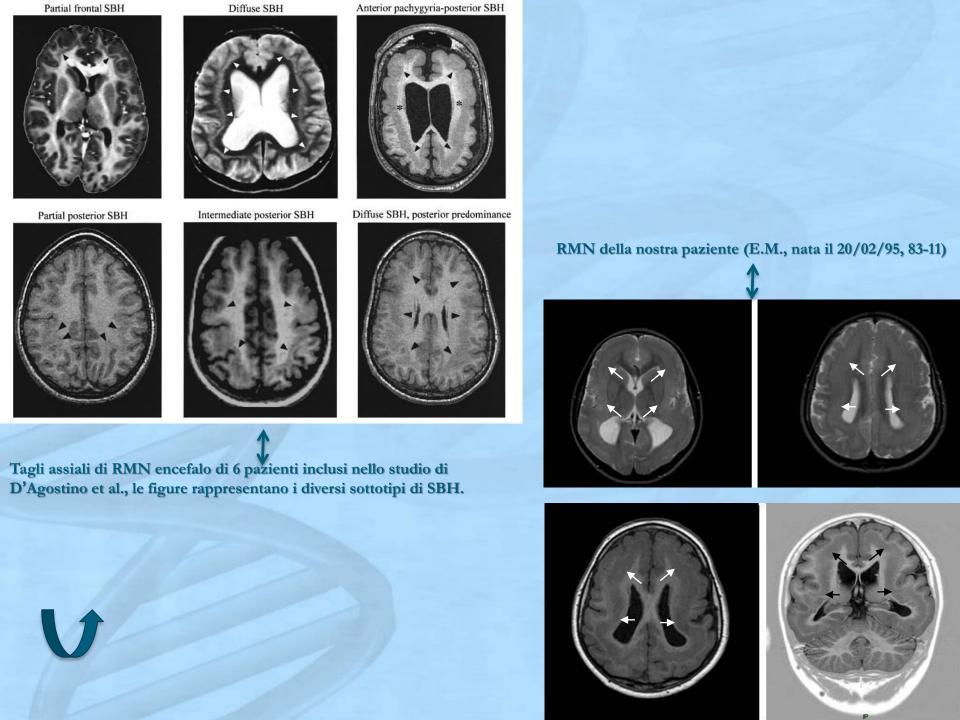
ritardo della

Nella norma

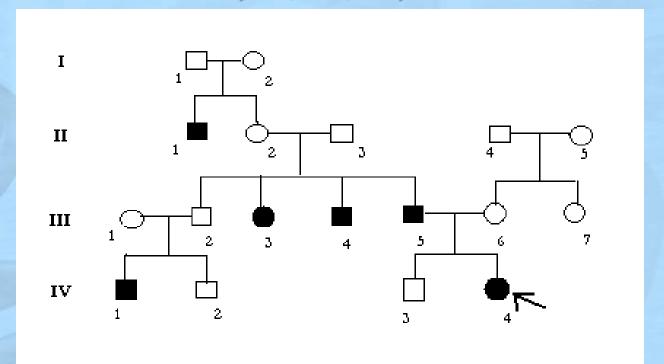
alterazioni displasiche del polo Non riferita.

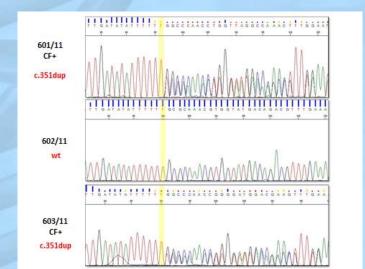
Zia materna

Non riferita


Down.

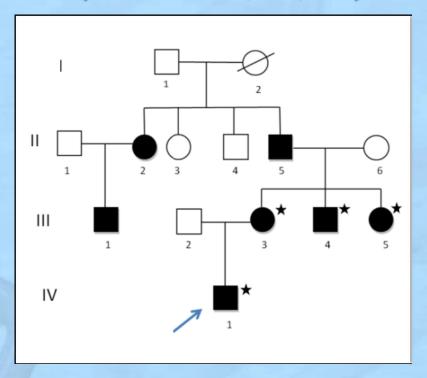
deceduta per grave

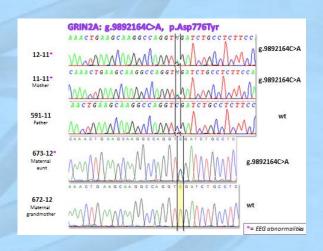

cardiopatia in S. di


KCNQ2

c.923C>T, chr 20

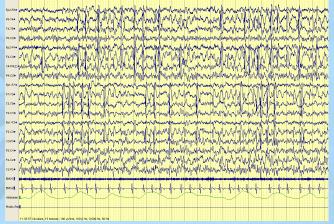
D.G., 16/05/10, 601-11





Il Sequenziamento Sanger conferma la mutazione in GABRG2 nella probanda (IV-4, 601-11) e nel padre affetto (III-5, 603-11). Non presente la mutazione nella madre sana (III-6, 602-11).

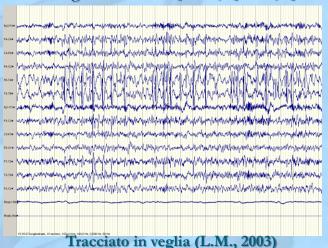
M.M., nato il 03/10/05, 12-11




Il Sequenziamento Sanger conferma la mutazione in GRIN2A nel probando (IV-1, 12-11), nella madre affetta (III-3, 11-11) e nella zia materna affetta (IV 5, 673-12). Non presente la mutazione nel padre sano (IV-2, 591-11) e nella nonna materna sana (II-6, 672-12)

M.M., nato il 03/10/05, 12-11

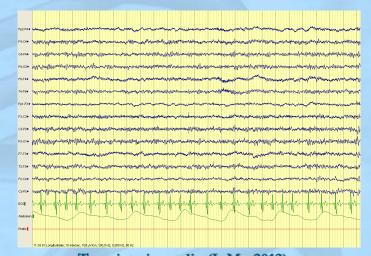
EEG 2012 (M.M., 6 aa 8 mm, IV 1, 12-11): attività di punta lenta seguita da onda in sede T-C bilateralmente, che in sonno si attiva diventando sub-continua. Non assume terapia.



Tracciato in sonno (M.M., 2012)

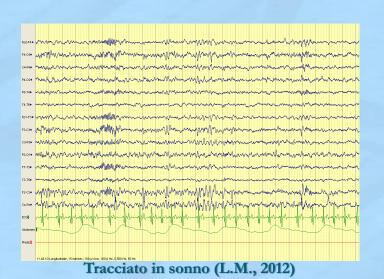
EEG 2003 (L.M., 6 aa, III 5, 673-12): anomalie a tipo punta difasica—onda lenta di grande ampiezza sulle regioni F-C-T, con netta prevalenza a dx. In sonno le anomalie si attivano nettamente in frequenza divenendo pressoché subcontinue sulle regioni centrotemporali di destra, senza tuttavia generalizzare. QIT 71, QIV 74, QIP 73.

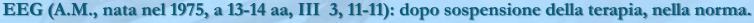
Tracciato in sonno (L.M., 2003)


EEG (A.M., nata nel 1975, a 5 aa, III 3, 11-11): anomalie epilettiformi plurifocali. Focolaio più attivo centrale sx. In sonno netta attivazione delle anomalie: due focolai indipendenti di P ripetitive, uno in O dx, uno in T posteriore sx (più evidente in sonno).

EEG 2009 (L.M., 12 aa, III 5, 673-12): modestamente diminuite le anomalie precedentemente segnalate

Tracciato in veglia (L.M., 2009)


EEG 2012 (L.M. 15 aa, III 5, 673-12): nei limiti di norma



Tracciato in veglia (L.M., 2012)

Tracciato in sonno (L.M., 2009)

Epilepsia, **(*):1-12, 2012 doi: 10.1111/j.1528-1167.2012.03516.x

FULL-LENGTH ORIGINAL RESEARCH

Targeted next generation sequencing as a diagnostic tool in epileptic disorders

*Johannes R. Lemke, †Erik Riesch, †Tim Scheurenbrand, †Max Schubach, †Christian Wilhelm, †Isabelle Steiner, *Jörg Hansen, *Carolina Courage, *Sabina Gallati, ‡Sarah Bürki, ‡Susi Strozzi, ‡Barbara Goeggel Simonetti, ‡Sebastian Grunt, ‡Maja Steinlin, §Michael Alber, §Markus Wolff, ¶Thomas Klopstock, **Eva C. Prott, ††Rüdiger Lorenz, ‡‡Christiane Spaich, §§Sabine Rona, ¶¶Maya Lakshminarasimhan, ¶¶Judith Kröll, ¶¶Thomas Dorn, ¶¶Günter Krämer, ***Matthis Synofzik, †††Felicitas Becker, †††Yvonne G. Weber, †††Holger Lerche, †Detlef Böhm, and †***Saskia Biskup

CONCLUSIONI

- NGS si è rivelato uno strumento efficace per individuare i difetti genetici presenti nei pazienti con fenotipi epilettici altamente eterogenei, 40% di mutazioni nel campione (8/20 pazienti).
- L'alta percentuale di mutazioni nel gruppo con fenotipo noto dimostra che un fenotipo clinico specifico indichi già la possibile presenza di geni specifici e di conseguenza un utilizzo di metodi tradizionali potrebbe essere la scelta diagnostica più facile da effettuare.
- Il risultato ottenuto nel secondo gruppo dei pazienti con fenotipo per cui il background genetico è largamente sconosciuto, dimostra che l'utilizzo di NGS può essere la metodica preferenziale, il sequenziamento tradizionale può essere molto complesso a causa della moltitudine di geni potenzialmente causativi di un certo fenotipo.
- Il sequenziamento con il pannello per l'epilessia di NGS per l'ultimo sottogruppo di bambini ha permesso la rilevazione di mutazioni in pazienti con quadri clinici poco chiari, gli approcci di sequenziamento convenzionali molto probabilmente non riuscirebbero a rilevare le aberrazioni genetiche
- La conferma di mutazioni già rilevate con il metodo tradizionale ha fortemente sottolineato l'attendibilità di queste nuove metodiche diagnostiche.

CONCLUSIONI

- NGS rappresenta un veloce e conveniente metodo di screening diagnostico per analizzare le basi genetiche della epilessie.
- Nei prossimi anni si prevede l'utilizzo di NGS nella clinica e nella diagnostica. Per rendere ciò possibile sarà necessario razionalizzazione i processi di preparazione del campione, insieme a miglioramenti nella tecnologia ed in particolare nella precisione, grazie studi di validazione.
- Il trattamento delle grandi quantità di dati di sequenza in uscita rappresenta una sfida per la bioinformatica clinica di laboratorio.
- L'interpretazione corretta dei risultati del sequenziamento richiede un'ulteriore caratterizzazione delle varianti genomiche presenti nelle regioni analizzate.

Grazie per l'attenzione

Ricordando sempre questo dolce sorriso...